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Abstract

Background

Cervical auscultation with high resolution sensors is currently under con-

sideration as a method of automatically screening for specific swallowing ab-

normalities. To be clinically useful without human involvement, any devices

based on cervical auscultation should be able to detect specified swallowing

events in an automatic manner.

Methods

In this paper, we comparatively analyze the density-based spatial clus-

tering of applications with noise algorithm (DBSCAN), a k-means based

algorithm, and an algorithm based on quadratic variation as methods of

differentiating periods of swallowing activity from periods of time without
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swallows. These algorithms utilized swallowing vibration data exclusively

and compared the results to a gold standard measure of swallowing dura-

tion. Data was collected from 23 subjects that were actively suffering from

swallowing difficulties.

Results

Comparing the performance of the DBSCAN algorithm with a proven

segmentation algorithm that utilizes k-means clustering demonstrated that

the DBSCAN algorithm had a higher sensitivity and correctly segmented

more swallows. Comparing its performance with a threshold-based algo-

rithm that utilized the quadratic variation of the signal showed that the

DBSCAN algorithm offered no direct increase in performance. However, it

offered several other benefits including a faster run time and more consistent

performance between patients. All algorithms showed noticeable differen-

tiation from the endpoints provided by a videofluoroscopy examination as

well as reduced sensitivity.

Conclusions

In summary, we showed that the DBSCAN algorithm is a viable method

for detecting the occurrence of a swallowing event using cervical auscultation

signals, but significant work must be done to improve its performance before

it can be implemented in an unsupervised manner.

Keywords: cervical auscultation, swallowing accelerometry, novelty

detection, dysphagia
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1. Introduction

1.1. Dysphagia Background

Dysphagia is a general term that is used to refer to a number of swal-

lowing disorders and impairments [1]. Often a co-morbid disorder alongside

neurological impairments, stroke in particular, it is estimated that well over

500,000 Americans are affected by dysphagia every year [1, 2, 3]. There

are several different methods used to identify the physiologic characteristics

of swallowing disorders, but the most widely utilized gold standard diag-

nostic imaging examination is the videofluoroscopic swallow study (VFSS)

[1, 4]. For this test, a patient is asked to swallow various foods and liq-

uids that contain a radiopaque contrast agent while observed by a trained

examiner [5, 6]. This examiner analyzes the kinematic x-ray data for biome-

chanical errors and subsequent misdirection of swallowed material [5, 6].

The examiner, typically a specially trained Speech Language Pathologist,

can determine whether or not the patient exhibits pathologically abnormal

swallowing, can identify the likely cause and nature of those problems, and

can assess the efficacy of interventions designed to mitigate the physiologic

abnormalities observed [6]. Their judgment is based on the pattern of bolus

propulsion, timing of the opening and closure of various valves in the oropha-

ryngeal mechanism, and the range and speed of motion of the anatomical

structures of the throat [6, 7, 8]. These dynamics are all generators of the

flow of the bolus through the oropharyngeal structures and into the diges-

tive system [6, 7, 8]. While this test is widely used and is considered the

gold standard for assessment of swallowing function, it is reliant on using

a small amount of potentially harmful ionizing radiation, requires that the

patient be able to actively participate during the exam, and assumes that
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the patient can travel to the location of the x-ray instrumentation. These

requirements all serve as potential obstacles to implementing proper health-

care in a timely manner, especially in settings in which videofluoroscopy is

unavailable [6, 9, 10, 11, 12, 13, 14, 15]. However, screening to accurately

predict which patients need a full diagnostic imaging evaluation remains

a relatively crude and somewhat subjective process [16]. As a result, im-

proved and more accurate methods of screening for dysphagia are widely

sought-after [17].

While several non-instrumented screening procedures have been adopted

in medical centers worldwide, efforts to develop improved dysphagia screen-

ing methods with both high sensitivity and specificity are currently in devel-

opment. One such instrumented method, cervical auscultation augmented

with accelerometry, aims to provide vibratory data reflecting specific kine-

matic events within the oropharyngeal mechanism [18, 19]. For traditional

cervical auscultation for dysphagia screening, a device that can record sounds

is placed on the patient’s throat while they swallow [20, 21]. An examiner

then listens to these sounds and makes subjective inferences about the pa-

tient’s swallowing function [20, 21]. In the past this has typically involved

the use of a stethoscope, with the examiner subjectively attempting to judge

the flow of swallowed material and biomechanical performance of the throat

by listening to the generated sounds. Unfortunately, the ability of a clinician

to identify discrete impairments and make an accurate assessment from this

raw information has been shown to have very poor inter-judge agreement

and validity [20, 21, 22]. An alternative method that has been investigated

involves using an accelerometer to record the data and then analyzing the

data digitally. The ability to precisely filter the data and calculate specific

signal features, including those that the human auditory system cannot de-
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tect or analyze from the perceived acoustic signal alone, could potentially

provide a more accurate and reliable assessment when compared to the bed-

side stethoscope method [23]. By removing this subjective component from

cervical auscultation based screening it could be possible to produce a viable

automated screening tool for dysphagia that will more accurately identify

patients who are at elevated risk for adverse events and should undergo

testing such as VFSS.

1.2. Cervical Auscultation Segmentation Methods

If an automatic swallowing screening tool is to be developed, one impor-

tant issue that must be addressed is the ability to automatically identify the

beginning and end of a swallow in the acoustic/vibratory data stream using

only the cervical auscultation data itself. Swallowing vibrations are highly

variable since they are produced by a physiological process that is subject

to many different, uncontrollable variables. Something relatively minor such

as the bolus consistency can change the cervical auscultation signal while a

less than perfect connection between the device and the patient’s skin can

introduce fairly high amplitude artifacts [19]. As such, the resulting data

set is not always “well behaved” and can be skewed in the feature space or

contain a large number of outliers. This is especially true when looking at

the data recorded from a single patient, as such signals will contain a rela-

tively small number of data points from a statistical perspective. This can

result in a less than ideal grouping of the data and a loss of both accuracy

and precision when segmenting.

There have been several attempts to segment swallowing vibrations into

‘swallowing’ and ‘non-swallowing’ segments, but results have been mixed as

the field is still in its early stages. One method that has received significant
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attention is the neural network technique. The signal is windowed and then

multiple time-varying features are calculated before being fed into the neural

network [24, 25, 26, 27]. After sufficient training this network should be able

to differentiate between periods of time where swallowing activity is present

or absent based on the values of the inputs [24, 25, 26, 27]. However, it

is very computationally intensive and researchers are still debating what

features are valid inputs to use for the purposes of segmentation [24, 25,

26, 27]. More computationally simple techniques have also been utilized,

such as thresholding the time domain signal, but their accuracy has been

questionable [28, 29, 30, 24, 31]. With this technique, an amplitude threshold

is declared and any part of the signal that lies above that value is considered

to be a part of a swallow [28, 29, 30, 24]. This technique has also been

modified slightly to threshold, not the signal itself, but various time-varying

features with variable levels of accuracy [28, 29, 30, 24, 31, 32, 33, 34]. The

quadratic variation algorithm is one notably successful example [35]. Based

on the magnitude of the amplitude changes between successive points, the

algorithm calculates the volatility and curvature of the time domain signal

[35]. Since the presence of a swallow causes a notable increase in signal

activity and a subsequent large increase in the value of both of these features,

swallows can be located by thresholding both feature values and taking

the intersection of the sets [35]. While this method has high sensitivity,

it over-identifies the presences of swallowing events because it is unable to

differentiate periods of activity corresponding to swallows and periods of

high activity corresponding to coughs or other signal artifacts [35].

A third technique which strikes a balance between computation require-

ments and accuracy and has been used to automatically segment swallowing

vibrations successfully is the k-means clustering technique [36, 37, 18, 19].
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Like with other techniques, the signal is windowed and several time-varying

features are calculated [38]. Unlike other techniques, however, these points

are then mapped onto a feature space and grouped into two or more ran-

domly chosen clusters [38]. Through iterative methods the k-means algo-

rithm attempts to group together points with similar feature values by min-

imizing the distance between the location of a cluster’s centroid and all of

its members [38]. If the chosen features change in value based on whether or

not the patient is swallowing, then it is at least theoretically possible to di-

vide swallowing vibration data into swallowing and non-swallowing segments

[38, 37, 36]. However, there are some issues with this clustering technique

that can cause problems when segmenting swallowing signals. Its sensitivity

to outliers and non-spherically shaped clusters can be problematic when an-

alyzing physiological data, as such a data set is unlikely to be well behaved.

This could cause the swallowing signals to be segmented incorrectly or with

reduced precision. Furthermore, the non-deterministic nature of the algo-

rithm offers unique challenges if the algorithm is to be implemented without

active human oversight.

For this project, our goal was to comparatively analyze existing k-means

and quadratic variation algorithms along with a new DBSCAN-based algo-

rithm in the context of swallowing vibration signals. Specifically, we sought

to investigate the accuracy of each algorithm by evaluating their abilities

to correctly detect swallowing segments that were obtained by human anal-

ysis of videofluoroscopic imaging data. By using a data set that consists

of patients that have been diagnosed with swallowing disorders we hope to

better understand how these methods perform in their intended role. We

also hope to be able to characterize the benefits and drawbacks inherent to

each method. We hypothesized that the DBSCAN algorithm would segment
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our data more accurately and reliably than other segmentation methods. Its

density-based sorting technique is better suited to physiological data than

the k-means technique while being more applicable to an unknown data set

than the quadratic variation thresholding methodology.

2. Materials

2.1. The DBSCAN Algorithm

The density-based spatial clustering of applications with noise algorithm,

usually abbreviated as DBSCAN, is a recently developed alternative method

for clustering data sets [39]. Unlike other clustering algorithms that require

many parameters, such as the number of clusters in the set, to be known

and defined before computation, the DBSCAN algorithm has only two in-

put parameters: the minimum size of a cluster and the maximum distance

between points in a cluster [39]. The algorithm operates by cycling through

all points in the data set and calculating the number of neighbors each point

has, which is defined as the number of other points that are within the min-

imum distance of the original point [39]. Any data point that has fewer

neighbors than the minimum cluster size parameter is declared to be a noise

point that is not associated with any cluster [39]. However, a point that has

at least as many neighbors as the minimum cluster size is declared to be the

start of a new cluster [39]. The neighbors of the starting point are added to

this cluster as are the neighbors of those points provided that they meet the

minimum cluster size requirements [39]. The cluster continues to grow in

this manner until no more points can be added and the algorithm proceeds

to search for the start of a new cluster among the unsorted points [39].

The DBSCAN algorithm has clear computational similarities to centroid-
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based clustering techniques such as the k-means clustering method. How-

ever, the DBSCAN algorithm utilizes the density of the data points in the

feature space to identify clusters rather than the location of the centroids,

which provides a few advantages. First, this density-based approach allows

for superior identification and separation of clusters that are of different sizes

and shapes when compared to centroid-based methods [39, 40]. In partic-

ular, the DBSCAN algorithm is known for being able to correctly separate

convex-shaped data clusters in situations where centroid-based clustering

perform very poorly. Second, this algorithm is able to sort data points into

a separate ‘noise’ cluster if a given point is too dissimilar to the rest of the

data set [39, 40]. Rather than forcing every point to belong to a cluster

to some degree like other clustering algorithms the DBSCAN algorithm can

exclude points from being part of any cluster, which reduces the effects of

outliers on its classification performance. Lastly, this algorithm is deter-

ministic [39, 40]. Some clustering techniques, such as k-means clustering,

randomly select the initial locations of the cluster centroids in the feature

space which can cause the algorithm to find a local rather than absolute

minimum of its cost function. Since there is no randomness inherent in the

DBSCAN algorithm it does not carry a similar risk when implemented in

an unsupervised manner.

2.2. Swallowing Vibration Recording

Data was collected by using a tri-axial accelerometer (ADXL 327, Ana-

log Devices, Norwood, Massachusetts). The two main output signals from

the accelerometer were bandpass filtered from 0.1 to 3000 Hz with ten times

amplification by an analog filter (model P55, Grass Technologies, Warwick,

Rhode Island) before being sent into a National Instruments 6210 DAQ and
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recorded in a custom Labview application (National Instruments, Austin,

Texas). A sampling rate of 20 kHz was used to ensure there would be no

aliasing of the signal. Previous studies have shown that this setup is ade-

quate to detect swallowing activity [18, 30, 19, 41]. This data set was also

digitally processed by the same custom program in Matlab (Mathworks,

Natick, MA) that was used in [18]. The only modification was the addition

of the Robust Algorithm for Pitch Tracking (RAPT, [42]), which was used

to identify and remove some patient vocalizations from the signal and reduce

the number of false positives generated by the sorting algorithms [43]. Im-

ages output by the fluoroscopy instrumentation (Ultimax system, Toshiba,

Tustin, CA) which was operated concurrently with the accelerometer were

input to a video capture card (AccuStream Express HD, Foresight Imaging,

Chelmsford, MA) and recorded with a custom LabView program (National

Instruments, Austin, Texas).

3. Methods

3.1. Data Sets

We used two separate data sets for analysis. The first was a collection

of 100 artificial signals intended to test the basic functionality of the algo-

rithm. The idea was to very generally represent the gross characteristics of

real swallowing signals by generating noisy signals with localized bursts of

activity. Each signal was composed of ten non-overlapping sinusoids with

random start times, durations of no more than 5 seconds, and frequencies

up to 5 kHz added to a stream of Gaussian white noise. Our limits on du-

ration and frequency are based on past swallowing studies and are intended

to represent signal components of a duration and frequency that may be en-
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countered during a true swallowing examination [18, 41, 44, 30]. The signal

to noise ratio was equal to four for all sinusoids.

Our second data set was collected from an experiment conducted at the

University of Pittsburgh Medical Center (Pittsburgh, Pennsylvania). Adult

patients referred for diagnostic evaluation of swallowing function as part

of their inpatient medical care underwent simultaneous videofluoroscopic

examination and recording of vibratory data while swallowing radiopaque

contrast in a neutral head-neck position. The accelerometer was placed over

the cricoid cartilage, located through visual and tactile methods, to con-

currently record vibratory data the occurred during the swallows produced

by the patients. The main axes of the accelerometer were aligned approxi-

mately parallel to the cervical spine and perpendicular to the coronal plane,

respectively. The third axis, which was aligned perpendicular to the sagit-

tal plane, was not used for this study since the techniques being studied

do not utilize the corresponding data. The cricoid cartilage was chosen as

the mounting location as it was previously demonstrated to provide a high

quality vibratory signal [45]. Patients with a history of head or neck cancer

or major head or neck surgery were excluded from the study as were those

with assistive equipment which obstructed our recording location or who

were unable to grant informed consent. No other disorders were grounds for

exclusion from the study. A total of 23 participants were recruited, 8 with

a history of stroke and 15 without. Patients produced 191 discrete, single

swallows with their heads in a neutral position and another 40 single, dis-

crete swallows with their heads in a flexed posture, referred to as a chin-tuck

position [7, 46, 47]. Bolus consistency and volume were not controlled for

in order to assess the general viability of the segmentation technique, while

postural techniques other than the chin tuck were excluded from our anal-
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ysis due to their lower rate of use in the clinic. A trained speech language

pathologist with established accuracy, inter-, and intra-rater reliability in

analysis of kinematic videofluoroscopic swallowing data and detection of

physiological swallowing events, was recruited for this study. They observed

the frame-by-frame video recording only and determined the start and end

points of each swallow while blinded to the accelerometry data. The be-

ginning (onset) of a swallow segment was defined as the time at which the

leading edge of the swallowed bolus intersected with the shadow cast on

the x-ray image by the posterior border of the ramus of the mandible. The

ending (offset) was the time that the hyoid bone completed its motion associ-

ated with swallowing-related pharyngeal activity and returned to its resting

or pre-swallow position. The protocol for the study was approved by the

Institutional Review Board at the University of Pittsburgh.

3.2. Data Analysis

Once the data was processed we then divided each signal into multiple

segments which would later be sorted by the DBSCAN algorithm. We used

a simple rectangular windowing function with a length of 200 ms and al-

lowed for a 50 ms overlap with each adjacent segment. This window size

was chosen as it would allow for adequate precision of the segmentation algo-

rithm while still providing enough data points in each segment for properly

representative feature calculations. Increasing or decreasing the size of the

window by more than 50 ms was found to significantly decrease the accu-

racy and performance of the algorithm. We then calculated two features

with respect to the data points within each window to serve as the basis of

the DBSCAN’s sorting. The first, standard deviation, is easily calculated
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through the common formula

σ =

√√√√ 1

N

N∑
i=1

(xi − µ)2 (1)

where N is the number of points in the sequence, µ is the mean of sequence,

and x is the sequence of data points within each window. In order to allow for

comparison between signals and to avoid technical issues with the algorithm,

the calculated standard deviations were normalized by dividing each value

by the standard deviation of the entire recorded signal before windowing.

The second feature we calculated was the waveform fractal dimension

WD =
logL

log d
(2)

For ordered sets of points, such as a time-varying signal, L is the total

length of the waveform, defined as the sum of the distances between succes-

sive points, and d is the diameter of the waveform, defined as the maximum

distance between the starting point and any other point in the waveform

[48]. Both of these features have been used in past research on swallowing

segmentation [49, 32, 30]. The basic premise is that the vibration signal will

maintain some baseline value when the patient is not swallowing, but will

significantly increase in amplitude and frequency while a swallow is occur-

ring. Both standard deviation and waveform fractal dimension should follow

a similar pattern where their values are high only during periods of swallow-

ing activity. We utilized both features concurrently because past research,

as well as our preliminary tests, showed that the waveform fractal dimension

and standard deviation of swallowing vibrations are not perfectly correlated

despite their similarities [49, 32]. By making use of both features in our

analysis we can differentiate small noise perturbations that only affect one
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feature’s value from actual signals caused by physiological disturbances that

should affect both features. This will reduce the number of false positives

that would occur when looking at each feature independently.

In our efforts, we generally chose time domain features to segment swal-

lowing vibration signals. Time domain features, particularly those that we

have chosen, are also relatively simple traits that are common among swal-

lowing signals. Swallowing vibrations have not been thoroughly studied and

the exact characteristics that form a swallow are not yet known. Rather

than attempt to locate complex waveform shapes or attempt to filter our

certain frequency bands that may not be present during all swallows, our

chosen features allow us to simply divide a signal into active (swallowing)

and non-active (resting) segments. This is not to say that frequency and

time-frequency based analyses are not useful in this context. They are likely

a closer analog to how cervical auscultation is implemented in the clinical

setting, are more receptive to various filtering and noise-cancelling methods,

and offer additional signal features that could be beneficial for a segmenta-

tion task after further investigation. However, these benefits do not outweigh

the importance of time resolution when attempting to locate the start and

ending times of an event, and so we have limited our analysis methods to

time domain traits of our signal.

The DBSCAN algorithm itself was implemented in a custom application

in the Matlab environment. The features corresponding to both accelerom-

eter axes were entered into the algorithm concurrently, resulting in a four-

dimensional feature space. Once again, by including both signals in our

analysis we can differentiate between noise that is present in only one axis

and actual physiologically based signals that are visible in both axes. Fur-

thermore, though attempts were made to do so, the accelerometer axes were
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not always perfectly parallel to the cervical spine. Examining data from

both axes concurrently ensures that information is not lost or attenuated

when the signal is analyzed. All data points were sorted in chronological

order by the DBSCAN algorithm for simplicity and reproducibility. We

chose to use a minimum cluster size that was one more than the number

of dimensions, giving us a minimum cluster size of five points. Through

extensive trial and error we found that a value of 0.125 for the maximum

distance between points in a cluster provided adequate, non-trivial segmen-

tation of the signal without over-tuning the parameters. Since we have not

adequately investigated the differences between swallows and other vibra-

tory disturbances we divided our segmented data into two categories. The

first category consisted of all of the periods of low signal activity with no

swallowing or other disturbances and always corresponded to the first clus-

ter found by the DBSCAN algorithm due to our chronological input of data

points. The second category consisted of all other clusters found by the

algorithm along with the cluster-less noise points, which all corresponded

to periods of high activity in the vibratory signal. We then returned this

information to the time domain and applied minor corrections to smooth

out the waveform. Prior research has shown that the duration of swallowing

vibrations is one second or longer, so any event that lasts for less than half

of that duration at most clearly cannot be a swallow event [18, 36, 50, 51].

Therefore, any segments in the second category that were less than 400 ms

in duration (2 window lengths) were considered to be false positives, as no

swallow could be completed in such a short time, and were eliminated from

consideration. Likewise, any similar length segments of the first category

that were flanked by valid swallowing segments were assumed to be part of

the swallow for similar reasons.
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To provide proper context for our results with the DBSCAN algorithm,

we also analyzed the data with two alternative algorithms. The k-means

algorithm detailed in [36] was used in order to compare the results of our new

algorithm with an existing clustering-based technique. All parameters and

procedures set forth by the authors remained unchanged for our experiment

[36]. The quadratic variation algorithm detailed in [35] was used to provide

an example of a non-clustering segmentation method. The process remained

unchanged, but the parameter values were adjusted to better suit our data

and filtering techniques. Using the process described in the previous work

we chose to use a k value of 200 points, corresponding to a sub-sampling rate

of 10 ms with our higher sampling rate [35]. We also decreased the volatility

threshold to a value of 0.004 and the curvature threshold to a value of -

0.00002. The attenuation from our filtering techniques resulted in these

features having lower values than in the original work, and so we adjusted

the threshold values to match the segments given by the original threshold

values on an unfiltered signal [35]. After clustering the data was sorted into

four categories. A correctly segmented swallow consisted of segments that

contained exactly one swallow as defined by the speech-language pathologist

analyzing the imaging data. A ‘missed’ swallow was defined as a swallow

that was not segmented as such by the algorithm, otherwise referred to as

a false negative. A ‘false positive’ occurred when the algorithm produced

a swallowing segment that did not contain an actual swallow or a segment

that contained only a fraction of the true swallow as defined by the speech-

language pathologist. The last category consisted of segments produced

when the x-ray camera was not recording and which were not included in

our analysis. Though our accelerometer was active and recording data for up

to one minute at a time, the actual videofluoroscopic exposures containing
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the imaging data were collected in short-duration bursts as each bolus was

presented then swallowed. Any segments produced by the algorithm that

were found more than five seconds outside the times that the camera was

recording were ignored for our study since any swallows which could have

occurred during those times were not video-recorded and therefore could not

be compared to the signal data.

We utilized several measures to assess the performance of our segmen-

tation algorithms. The sensitivity of the algorithm was calculated as the

ratio of correctly identified swallow segments to the total number of swallow

segments identified by the speech-language pathologist. The precision was

calculated as the ratio of true positives to the total number of segments pro-

duced by the algorithm. The harmonic average (F1 score) was calculated

as twice the product of the sensitivity and precision divided by their sum.

Specificity and negative predictive value were not considered for this exper-

iment. While a swallow event can be identified objectively by a specialist,

there is no clear definition of what constitutes a single non-swallowing event

and so we cannot define the true negative rate of the algorithm. Further-

more, the algorithms do not sort data into multiple classes, but instead sort

all data as non-swallowing events unless certain criteria are met. Attempt-

ing to characterize the specificity at this stage of the development of this

screening method, then, would not provide any useful information that is

not already detailed by the algorithm’s precision and false positive rate.

Two-proportion z-tests were used to search for any statistical differences in

the sensitivities of our algorithms while pairwise Wilxocon rank sum tests

compared the degree to which the algorithms overestimated the duration of

swallows. Lastly, we tested the run time of each algorithm by averaging the

time required to segment a random selection of 20 of our real swallowing
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data signals. Each signal used for this purpose was trimmed to a length of

60 seconds to provide a consistent number of data points across trials.

4. Results

To confirm that the DBSCAN algorithm functioned as intended, we seg-

mented our first data set consisting of 100 sets of 10 noisy sinusoids. Figure

1 is an example of such a waveform and the results of our test. In all cases

the algorithm correctly identified the presence of increased signal activity

and provided ten continuous segments. However, it typically over-estimated

the duration of each segment. On average, the reported beginning and end

of each segment was approximately 130 ms before or after the true start

or end, respectively. Considering that the error is significantly less than

the length of our windowing function this was considered to be acceptable

performance of the algorithm for our purposes. This is further supported

by the fact that, for the same data set, the k-means algorithm was less ac-

curate and produced endpoints that were approximately 370 ms before the

true start of the artificial swallow and 560 ms after the true end on average.

The quadratic variation algorithm performed the best on this artificial data

set with endpoints that were only 60 ms greater than the true endpoints on

average.

We then compared the performance of the three algorithms when seg-

menting swallowing vibrations from patients with swallowing difficulties.

Figure 2 provides an example of this data and the corresponding output

from the DBSCAN algorithm for illustrative purposes. In this figure, the

first swallow was segmented correctly whereas the second swallow was lo-

cated correctly but the duration was over estimated due to a signal artifact.
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For comparison, figure 3 provides a pair of swallows made by a subject with

no swallowing difficulties. Table 1 presents the number of swallows that

were sorted into each of our output categories while Table 2 presents these

same results with statistical measures. Using a two-proportion z-test, we

found that the sensitivities of the DBSCAN and quadratic variation algo-

rithms were not significantly different (p = 0.549 and p = 0.303 for normal

and chin tuck data, respectively). The sensitivity of the k-means algorithm

was significantly different from both other algorithms for data gathered in a

neutral head position (p << 0.001 for both), but was only significantly dif-

ferent from the sensitivity of the quadratic variance algorithm for chin tuck

data (p = 0.165 and p = 0.017 for the DBSCAN and quadratic variance

algorithms respectively).

Since only segments that contained the entire swallow were classified as

being correct, all segments produced by all three algorithms were longer

than the duration provided by the Speech-Language Pathologist. For swal-

lows produced in a neutral head position, the DBSCAN algorithm provided

endpoints that were, on average, approximately 0.85 s before and after the

true endpoints of the swallow (1.70 s total). This value increased to approxi-

mately 1.05 s for chin tuck swallows with a slight bias towards the beginning

of the swallow corresponding to the patient’s head movement. The k-means

algorithm likewise produced endpoints that were, on average, 1.20 s before

and after the true endpoints of normal swallows and 1.50 s for chin tuck

swallows. Finally, endpoints provided by the quadratic variation algorithm

were offset by an average of 0.65 s and 0.80 s for normal and chin-tuck

swallows, respectively. All of these differences demonstrate statistical sig-

nificance at the p < 0.05 level using pairwise Wilcoxon rank-sum tests with

the exception of the overestimation of chin tuck swallows by the DBSCAN
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and k-means algorithms (p = 0.11). The average runs times to segment a 60

second signal for the three algorithms were equal to 10.2 s, 8.9 s, and 177 s

for the DBSCAN, k-means, and quadratic variation algorithms, respectively.

5. Discussion

5.1. Performance Summary

The performance of the quadratic variation algorithm, specifically Table

2, is comparable to the results presented in a previous study with non-

healthy swallows [35]. As such, we can safely assume that our data set and

testing procedure was similar to that used previously to test the k-means

and quadratic variation algorithms’ performances. The performance of the

two previously tested algorithms, however, was noticeably worse than their

performances with healthy data [36, 35]. This could be the result of multiple

issues, but we feel that it is chiefly the result of a lower signal to noise ratio

in this study. Dysphagic syndromes are notorious for producing a variety

of perturbations in typical physiologic and kinematic oropharyngeal events

that occur during swallows [52, 4, 53]. Weakened muscles that produce

less forceful swallows and generate lower magnitude vibrations is one fairly

common trait of dysphagia that could have played a substantial role in

this study [54]. During this experiment, it was qualitatively noted that the

vibrations corresponding to swallows were lower in magnitude than those

signals recorded from healthy patients in a previous study [18]. This is

apparent by comparing the amplitudes of the signals in figures 2 and 3.

Even after implementing our signal processing strategies the signal to noise

ratio of dysphagic signals did not achieve the same level that it did in the

healthy patient experiment. All three algorithms operate on the assumption
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that the signal being segmented consists of low-amplitude background noise

punctuated by relatively high-amplitude swallowing signals. By reducing

the separation of these two classes it is more difficult to mathematically

differentiate them regardless of the precise method for doing so. Despite

this complication, all three algorithms correctly segmented at least half of

all presented swallows. Combined with the performance of the algorithms

in past studies with more controlled data sets [18, 36, 35], we can safely

conclude that the lower performance observed in this study is a result of the

nature of our data set rather than the implementation of the algorithms.

Looking at Table 2, we can conclude that the k-means algorithm did not

perform as well as the alternatives. We believe that this is a result of outliers

skewing the data set, which was mentioned previously. We collected data

passively during routine videofluoroscopy examinations. This resulted in

somewhat more artifacts to be present in our data, as the examiner focused

on gathering data via videofluoroscopy, than there would have been in an

environment where the focus of the test was gathering unadulterated data

with the accelerometer. This resulted in all algorithms producing more

than the expected number of false positives, as certain motion artifacts can

produce local variances that are significantly higher than swallows. This is

particularly troublesome for the k-means algorithm as the membership of a

point to a cluster is dependent on the location of all other points that are

already sorted into the cluster. If a number of extreme outliers are added

to the data set, the cluster to which those outliers belong will change its

location and some points will change their membership as a result. In our

case, since artifacts have high local variances the points associated with these

periods are incorrectly sorted as swallows. This causes some points which do

contain valid swallows but have smaller local variances, to be missed by the
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k-means algorithm and sorted as non-swallowing segments. The DBSCAN

algorithm does not have this problem. Though it too classified some of these

outliers as swallows, producing false positives, the sorting of actual swallows

is unaffected by the sorting of outliers. Points are sorted based on their

similarity to nearby points only rather than the data set as a whole such as

with centroid-based clustering. Likewise, the quadratic variation algorithm

sorts data by thresholding the data over time, and so future classification

is unaffected by the classification of other points. In summary, the sorting

of proper swallowing points is unaffected by the presence of false positive

artifacts when using the DBSCAN or quadratic variation algorithms whereas

the k-means algorithm suffers from lower sensitivity under noisy conditions.

From our results, we can see that the DBSCAN algorithm and the

quadratic variation algorithm performed comparably well on our data set.

The quadratic variation algorithm demonstrated slightly better sensitivity

whereas the DBSCAN algorithm had better precision, but overall they had

similar performance. One advantage that the quadratic variation algorithm

demonstrated was that the endpoints it provided more closely matched those

found through the videofluoroscopic exam. However, the DBSCAN algo-

rithm has two key benefits to offset this greater over-estimation of the swal-

low duration. First, it has a notably faster run time. The quadratic variation

algorithm does have a complexity of O(n), but this is found assuming that

the number of data points extends to infinity [35]. Using our high sampling

rate of 20 kHz and recording continuously for several minutes only results

in a number of data points on the order of 106, which few would consider

particularly large with regards to modern computer systems. For practical

implementations, this algorithm requires closer to an n2 number of calcula-

tions due to the kernel smoother used in the volatility equation [35]. The
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DBSCAN algorithm also requires an n2 number of calculations, but only in

the extreme case where no clusters can be found. Our implementation of

the algorithm requires far fewer calculations because sorting points into a

cluster reduces the number of distance calculations that must be made when

sorting other points. Furthermore, since the DBSCAN algorithm windows

the signal to produce its feature space, the clustering algorithm itself oper-

ates on an order of magnitude fewer data points. Our results demonstrate

this disparity for signal lengths of one minute, which are practical to obtain

during a clinical swallowing examination. We show that in this situation,

the DBSCAN algorithm offers a run time that is less than one tenth of that

offered by the quadratic variation algorithm.

The second key advantage of the DBSCAN algorithm is the consistency

of its performance. While the results varied with the quality of the signal

and the patient’s actions, the DBSCAN algorithm produced a mixture of

true and false positives for a given patient’s data. The quadratic variation

algorithm, on the other hand, produced noticeably different results when

presented with signals from different patients even though the overall per-

formance was similar to that of the DBSCAN algorithm. The data from one

patient may have been segmented perfectly by the algorithm, but it would

produce multiple false positive segments for every true positive for the sec-

ond patient’s data set and be unable to find any segments in a third data

set. We believe that this is a result of the difference in the features chosen

for each algorithm as well as the nature of clustering and thresholding based

classification schemes. The features used in the quadratic variation algo-

rithm, volatility and curvature, are calculated directly from the quadratic

variation of the signal. The issue is that the quadratic variation is not a

relative measure of a signal’s activity, but the raw cumulative sum of its
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amplitude. The magnitude of these features simply cannot be reliably com-

pared between patients in an uncontrolled environment. As a result, the

features used in the quadratic variation algorithm can vary in magnitude

significantly between patients and the threshold used for one data set may

not produce useful results for another. The DBSCAN algorithm corrects for

this issue by using relative values of features. It uses the normalized stan-

dard deviation of each data point relative to the overall signal’s standard

deviation whereas the waveform fractal dimension is an inherently relative

measure for a constant sampling rate. Though these values are not perfectly

comparable between patients, large, non-reproducible deviations in the sig-

nal such as those produced by coughs have less of an effect and the features

can be expected to fall within a certain range. The parameters optimized

for data from one patient are then translatable to other similar data sets.

In addition to these feature differences, the clustering technique used by

the DBSCAN algorithm has less strict limits on the values of its features.

A data point with feature values of +1 and +1 is functionally equivalent

to a point with feature values of
√

2 and 0 if the cluster is located at the

origin. This allows the DBSCAN algorithm to sort a point correctly despite

local fluctuations in the signal. The quadratic variation algorithm instead

uses hard threshold values for its features. If the signal fluctuates enough

so that even one feature does not meet the threshold requirements, then

that data point will be sorted as a non-swallowing point. Combining hard

thresholding with absolute feature values, as is the case with the quadratic

variation algorithm, can strongly impair the algorithm’s consistency. On

the other hand, the DBSCAN algorithm’s use of relative feature values and

clustering allow it to better handle unexpected variations in a signal and so

can perform more consistently between different patients.
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5.2. DBSCAN Advantages and Disadvantages

The DBSCAN algorithm also has a few advantages related to usability

when compared to the quadratic variation algorithm. First, the DBSCAN

algorithm has only one input parameter, the distance between neighboring

points, that must be adjusted in any significant capacity while the others

can be simply chosen to suit the task [39]. Even the window size has a

minimal affect on the overall performance of the algorithm provided it does

not significantly alter the number of data points, and therefore the density

of the feature space, obtained from a given signal. A 50 ms increase or de-

crease in the window size affected the classification of no more than 5 total

swallows in this study. The quadratic variation algorithm instead relies on

three parameters, the thresholds for volatility and curvature as well as the

sub-sampling factor k, which must be explicitly calculated for a given signal

in order to segment the data set [35]. This makes the DBSCAN algorithm

simpler to implement and modify for a given task. In addition, the segment

durations provided by the DBSCAN algorithm are not as closely associ-

ated with its input parameter values. The quadratic variation algorithm

operates by thresholding the volatility and curvature of a signal over time

[35]. Since these values are continuous, increasing or decreasing the thresh-

old magnitudes will correspondingly decrease or increase the length of the

segment. This means that the false positive rate and the rate that the algo-

rithm misses swallows are interlocked and one cannot be improved without

sacrificing the other. Conversely, the DBSCAN algorithm does not rely on

hard thresholding and instead utilizes windowing and clustering techniques.

Just as these attributes can somewhat account for large signal changes over

time, as described previously, they can also minimize the effects of changing

the input parameters. This allows for individual performance metrics of the
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DBSCAN algorithm to be adjusted independently to some extent without

additional classification methods or reduced performance in other areas.

The largest obstacle to the implementation of the DBSCAN algorithm

for swallowing vibration segmentation is the density of the points in the

feature space. One of the general requirements of the DBSCAN algorithm

is that each cluster should have a similar feature density. Unfortunately,

swallowing vibration signals do not follow this requirement. As described

previously, swallowing vibrations are bursts of high amplitude added over

a low amplitude background noise. These bursts of activity, however, are

not identical. Furthermore, swallowing is very fast compared to the total

length of the recorded signal. In our feature space, this results in a large

number of points corresponding to background noise being crowded into

the low standard deviation and low waveform fractal dimension quadrant

of the feature space. Only a few other points that form the segments that

contain swallowing activity are spread around the remainder of the feature

space. There are two ways to solve this issue. Our chosen method was

to simply turn the multi-cluster sorting into a novelty detection algorithm,

where any point that was not part of the cluster containing background noise

was assumed to be part of a swallowing segment. As our results showed,

this method has clear problems with generating false positives since it does

not differentiate between swallows or other disturbances. Though it could

eventually be possible to automatically differentiate swallowing vibrations

from coughing, breathing, or other non-swallow events we do not currently

have the knowledge necessary and so little can be done at the moment to

correct the issue. Future research, however, could potentially address this

shortcoming. The second possible solution is to obtain more data by having

the patient initiate a greater number of swallows, thereby more densely
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populating the area of feature space that contains points associated with

swallowing activity. Though a good idea in theory, this is likely not feasible

to accomplish on an individual basis. Patient fatigue and safety, particularly

with regards to the target population of dysphagic patients, would likely

become an issue before an adequate number of swallows were recorded for

this solution. One could pool the data from multiple participants, but this

would introduce a number of issues not necessarily related to segmenting

a given signal and would require an independent study dedicated to this

method.

6. Conclusion

Our goal in this study was to segment swallowing accelerometry data

with three different algorithms, one based on k-means, one based on quadratic

variation, and a new algorithm that utilized the DBSCAN method, and

compare the performance of each. Data was taken from patients with swal-

lowing difficulties and the algorithms were assessed based on the number of

swallows found and how closely the calculated endpoints matched those pro-

vided by a concurrent videofluoroscopy evaluation. In summary, our initial

hypothesis, that the DBSCAN algorithm was a superior method of segment-

ing swallowing accelerometry data, was proven incorrect. We found that the

k-means algorithm was objectively inferior in all respects, but the quadratic

variation algorithm had similar results to those produced by the DBSCAN

algorithm for our chosen performance metrics. We still feel that, given all

considerations, the DBSCAN algorithm is the superior option because it of-

fers several usability and consistency improvements while providing similar

performance to the quadratic variation algorithm. In spite of these advan-
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tages, there is still room for improvement when it comes to automatically

segmenting swallowing data in an unsupervised manner.
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Summary

Cervical auscultation is currently under consideration as a method of au-

tomatically screening for specific swallowing abnormalities. To be clinically

useful without human involvement, any devices based on cervical ausculta-

tion should be able to detect specified swallowing events in an automatic

manner. In this paper, we comparatively analyze the density-based spatial

clustering of applications with noise algorithm (DBSCAN), a k-means based

algorithm, and an algorithm based on quadratic variation in order to differ-

entiate periods of swallowing from periods of time without swallows using

only swallowing vibration data. The later two algorithms have been pre-

viously designed for use with cervical auscultation, but their performance

on data with non-healthy participants has been mixed. A new algorithm

based on the DBSCAN method was implemented because it provides sev-

eral benefits to the existing algorithms. Its clustering-based sorting is not

as strict as the thresholding of the quadratic variation algorithm, but also

is better as sorting arbitrarily shaped and noisy data when compared to

the k-means algorithm. Both attributes make it an attractive choice for

segmenting physiological data.

Data was collected from 23 subjects that were currently suffering from

swallowing difficulties and were scheduled to undergo a videofluoroscopic

evaluation at the University of Pittsburgh Medical Center. Comparing the

performance of the DBSCAN algorithm with a proven segmentation algo-

rithm that utilizes k-means clustering showed that the DBSCAN algorithm

has a higher sensitivity and correctly segments more swallows. Comparing

its performance with a threshold-based algorithm that utilized the quadratic

variation of the signal showed that the DBSCAN algorithm offered no di-
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rect increase in performance, but offered several other benefits including a

faster run time and more consistent performance between patients. All al-

gorithms showed noticeable differentiation from the endpoints provided by a

videofluoroscopy examination, where a trained speech-language pathologist

observed only the videofluoroscopic output, as well as reduced sensitivity.

In summary we showed that the DBSCAN algorithm is a viable method for

detecting the occurrence of a swallowing event using cervical auscultation

signals. However, it provides only small advantages over the best alterna-

tive algorithm and significant work must be done to improve its performance

before it can be implemented in an unsupervised manner.
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Figures
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Figure 1: DBSCAN segmentation of artificial signal. The upper signal is our artificial

test signal used to test our sorting algorithm. Below is the indicator sequence of the

DBSCAN algorithm which is high when a period of high signal activity is detected and is

low otherwise.
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Figure 2: DBSCAN segmentation of real dysphagic signal. The upper signal shows two

swallows made by a subject suffering from swallowing difficulties as recorded by the ac-

celerometer channel aligned in the anterior-posterior direction. The lower signal consists

of the output of the DBSCAN segmentation algorithm, which goes high when a swallow

is detected and remains low when it has not found a swallow. The dotted vertical lines

indicate the endpoints of each swallow as indicated by the speech-language pathologist.
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Figure 3: DBSCAN segmentation of real healthy signal. The upper signal shows two

swallows made by a patient with no swallowing difficulties as recorded by the accelerometer

channel aligned in the anterior-posterior direction. The lower signal consists of the output

of the DBSCAN segmentation algorithm, which goes high when a swallow is detected

and remains low when it has not found a swallow. The dotted vertical lines indicate the

endpoints of each swallow as indicated by the k-means algorithm, which has been proven to

correspond to the endpoints provided by a speech-language pathologist for healthy subjects

[36]. In comparison to figure 2, this signal is noticeably stronger than that created by the

subject with dysphagia.
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Tables

Table 1: Raw Algorithm Performance

DBSCAN K-Means Quadratic Variation

Neutral Chin Tuck Neutral Chin Tuck Neutral Chin Tuck

Correct 143 28 103 22 148 32

Missed 48 12 87 18 43 8

False Positive 91 23 101 27 119 35

Table 2: Statistical Summary of Algorithm Performance

DBSCAN K-Means Quadratic Variation

Neutral Chin Tuck Neutral Chin Tuck Neutral Chin Tuck

Sensitivity 0.749 0.700 0.542 0.550 0.775 0.800

Precision 0.611 0.549 0.505 0.449 0.554 0.478

Harmonic Average (F1 score) 0.673 0.615 0.523 0.494 0.646 0.598
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